Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 18(10): 1130, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591938
2.
Phys Chem Chem Phys ; 23(41): 23730-23740, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34643199

RESUMEN

Electrochemical interfaces involving solids enable charge transfer, electrical transport, and mass storage in energy devices. One central concept that determines the interfacial charge carrier concentration is the space-charge field. The classical theory accounts for electrochemical equilibrium in the absence of mechanical effects; such effects have recently been found critical in many solids, such as materials for lithium-ion and solid-state batteries, perovskite solar cells, and fuel cells. Towards elucidating the interplay between charge carriers and mechanics, we establish a generalized electro-chemo-mechanical space-charge model and categorize the carriers into physically-meaningful four types, based on the signs of the charge number (i.e., polarity) and the partial molar volume (i.e., expansion coefficient). Beyond the electrostatic effects discussed in the literature, our work reveals the importance of elastic effects, as demonstrated by simulations of a composite beam bending experiment. The analysis highlights opportunities to systematically tune the interfacial electrical conductivity and the reaction kinetics of solids through mechanics. Our treatment provides a rational basis for understanding stress-driven phenomena at interfaces in a wide range of solids.

3.
Nat Mater ; 20(7): 991-999, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33686277

RESUMEN

Layered oxides widely used as lithium-ion battery electrodes are designed to be cycled under conditions that avoid phase transitions. Although the desired single-phase composition ranges are well established near equilibrium, operando diffraction studies on many-particle porous electrodes have suggested phase separation during delithiation. Notably, the separation is not always observed, and never during lithiation. These anomalies have been attributed to irreversible processes during the first delithiation or reversible concentration-dependent diffusion. However, these explanations are not consistent with all experimental observations such as rate and path dependencies and particle-by-particle lithium concentration changes. Here, we show that the apparent phase separation is a dynamical artefact occurring in a many-particle system driven by autocatalytic electrochemical reactions, that is, an interfacial exchange current that increases with the extent of delithiation. We experimentally validate this population-dynamics model using the single-phase material Lix(Ni1/3Mn1/3Co1/3)O2 (0.5 < x < 1) and demonstrate generality with other transition-metal compositions. Operando diffraction and nanoscale oxidation-state mapping unambiguously prove that this fictitious phase separation is a repeatable non-equilibrium effect. We quantitatively confirm the theory with multiple-datastream-driven model extraction. More generally, our study experimentally demonstrates the control of ensemble stability by electro-autocatalysis, highlighting the importance of population dynamics in battery electrodes (even non-phase-separating ones).

4.
Angew Chem Int Ed Engl ; 58(17): 5503-5512, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30589168

RESUMEN

Perovskite oxides are candidate materials in catalysis, fuel cells, thermoelectrics, and electronics, where electronic transport is vital to their use. While the fundamental transport properties of these materials have been heavily studied, there are still key features that are not well understood, including the temperature-squared behavior of their resistivities. Standard transport models fail to account for this atypical property because Fermi surfaces of many perovskite oxides are low-dimensional and distinct from traditional semiconductors. In this work, the low-dimensional Fermi surfaces of perovskite oxides are chemically interpreted in terms of two-dimensional crystal orbitals that form the conduction bands. Using SrTiO3 as a case study, the d/p-hybridization that creates these low-dimensional electronic structures is reviewed and connected to its fundamentally different electronic properties. A low-dimensional band model explains several experimental transport properties, including the temperature and carrier-density dependence of the effective mass, the carrier-density dependence of scattering, and the temperature dependence of resistivity. This work highlights how chemical bonding influences semiconductor transport.

5.
Sci Adv ; 4(11): eaau5849, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30406207

RESUMEN

With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low-thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open three-dimensional (3D) forms. This approach not only enables efficient thermal impedance matching but also multiplies the heat flow through the harvester, thereby increasing the efficiencies for power conversion. Interconnected arrays of 3D thermoelectric coils built using microscale ribbons of monocrystalline silicon as the active material demonstrate these concepts. Quantitative measurements and simulations establish the basic operating principles and the key design features. The results suggest a scalable strategy for deploying hard thermoelectric thin-film materials in harvesters that can integrate effectively with soft materials systems, including those of the human body.

6.
Sci Adv ; 3(12): eaap8576, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29255804

RESUMEN

Energy harvesting with triboelectric nanogenerators is a burgeoning field, with a growing portfolio of creative application schemes attracting much interest. Although power generation capabilities and its optimization are one of the most important subjects, a satisfactory elemental model that illustrates the basic principles and sets the optimization guideline remains elusive. We use a simple model to clarify how the energy generation mechanism is electrostatic induction but with a time-varying character that makes the optimal matching for power generation more restrictive. By combining multiple parameters into dimensionless variables, we pinpoint the optimum condition with only two independent parameters, leading to predictions of the maximum limit of power density, which allows us to derive the triboelectric material and device figure of merit. We reveal the importance of optimizing device capacitance, not only load resistance, and minimizing the impact of parasitic capacitance. Optimized capacitances can lead to an overall increase in power density of more than 10 times.

7.
Nat Mater ; 12(10): 913-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23852400

RESUMEN

Heat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high-sensitivity imaging of structural disorder on the atomic and nanometre scales. The thermopower measurement acts to amplify the variations in the local density of states at the Fermi level, giving high differential contrast in thermoelectric signals. Using this imaging technique, we uncovered point defects in the first layer of epitaxial graphene, which generate soliton-like domain-wall line patterns separating regions of the different interlayer stacking of the second graphene layer.

8.
ACS Nano ; 6(5): 3853-60, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22468828

RESUMEN

Thermal transport at carbon nanotube (CNT) interfaces was investigated by characterizing the interfacial thermal conductance between metallic or semiconducting CNTs and three different surfactants. We thereby resolved a difference between metallic and semiconducting CNTs. CNT portions separated by their electronic type were prepared in aqueous suspensions. After slightly heating the CNTs dispersed in the suspension, we obtained cooling curves by monitoring the transient changes in absorption, and from these cooling curves, we extracted the interfacial thermal conductance by modeling the thermal system. We found that the semiconducting CNTs unexpectedly exhibited a higher conductance of 11.5 MW/m(2)·K than that of metallic CNTs (9 MW/m(2)·K). Meanwhile, the type of surfactants hardly influenced the heat transport at the interface. The surfactant dependence is understood in terms of the coupling between the low-frequency vibrational modes of the CNTs and the surfactants. Explanations for the electronic-type dependency are considered based on the defect density in CNTs and the packing density of surfactants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...